Appendix A: Current KaBOB Build Procedure

2 KaBOB is currently built using the following 21 steps:

- 1. download ontology files
 - 2. download database source files
 - 3. rdf-ize database source files
 - 4. load ontology files (from step 1)
- 5. run bio-to-ice rules (rules that generate ICE identifiers for each of the classes in the ontologies)
- 6. load RDF (from step 5)
- 7. load ICE RDF files (from step 3)
- 8. run id typing rules
- 9. load RDF (from step 8)
- 10. run id merging rules
- 11. load RDF (from step 10)
- 12. generate ID sets by computing a transitive closure of the mappings from step 10
- 13. load RDF (from step 12)
- 14. reify BIO entities for each ID set
- 15. load RDF (from step 14)
 - 16. run rules for adding parent classed to entities (knowing that a class is a gene, protein etc. is needed for step 18)
- 22 17. load RDF (from step 16)
- 18. run rules for linking genes and gene products (connecting genes to gene products is needed for subsequent BIO rules since sources are curated at varying levels of detail)
- 26 19. load RDF (from step 18)
- 27 20. run remaining ICE to BIO rules
- 21. load RDF (from step 20)

29

20

21

1

3

4

5

- At the end of this process is both a loaded instance of KaBOB and the source RDF
- files necessary to load another instance without having to run any of the generative
- processes (e.g., skipping steps 1,2,3,5,8,10,12,14,16,18,20). To integrate a new data
- source with KaBOB requires automating its download (step 2), writing a parser that
- will RDF-ize its contents(step 3), and then writing a series of rules as needed (not all
- sources require all rule steps) for: identifying and mapping source-specific identifiers
- (steps 8 and 10), adding entity-specific types, e.g., gene or gene products (step 16),
- entity linking rules necessary to create abstractions needed for the final BIO rules
- (step 18), and finally rules to generate additional BIO assertions (step 20). The level

- of effort and number of rules varies from source to source. A large multi-faceted
- source like UniProt will need all of the steps. Whereas extracting only drug-gene
- interactions from DrugBank would require downloading(2), RDF-ization(3),
- identifying(8) and mapping(10) identifiers, and then a final rule to link drug to a gene
- or gene product (20). While the drug-gene relation rule certainly requires information
- generated in steps 16 and 18, in this particular case DrugBank does not add
- information to these steps and the knowledge engineer integrating it need not write
- any additional rules for those steps.